Parallel imaging acceleration of EPIK for reduced image distortions in fMRI

نویسندگان

  • Seong Dae Yun
  • Martina Reske
  • Kaveh Vahedipour
  • Tracy Warbrick
  • Nadim Joni Shah
چکیده

EPI with Keyhole (EPIK) is a hybrid imaging technique used to improve the performance of EPI in dynamic MRI applications. The method had been previously validated at 1.5 T with both phantom and in vivo images; EPIK was able to provide a higher temporal resolution and less image distortions than single-shot EPI. The data presented here demonstrate that the performance of EPIK can be further improved by accelerating it with the parallel imaging. For this work, this combination was tested at 3 T. After initial evaluation using phantom images, use of the method in functional MRI was verified with visual fMRI measurements as well as MRI simulation results. The results showed that accelerated EPIK had increased temporal resolution with favorable robustness against susceptibility artifacts when compared with EPI or non-accelerated EPIK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole-brain high in-plane resolution fMRI using accelerated EPIK for enhanced characterisation of functional areas at 3T

The relatively high imaging speed of EPI has led to its widespread use in dynamic MRI studies such as functional MRI. An approach to improve the performance of EPI, EPI with Keyhole (EPIK), has been previously presented and its use in fMRI was verified at 1.5T as well as 3T. The method has been proven to achieve a higher temporal resolution and smaller image distortions when compared to single-...

متن کامل

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

High-resolution fMRI with higher-order generalized series imaging and parallel imaging techniques (HGS-parallel).

PURPOSE To develop a novel approach for high-resolution functional MRI (fMRI) using the conventional gradient-echo sequence. MATERIALS AND METHODS Echo-planar imaging (EPI) techniques have generally been used for fMRI studies due to their fast imaging time. However, it is difficult for studying brain function at the submillimeter level using this sequence. In addition, EPI techniques have som...

متن کامل

Isotropic Sub-Millimeter fMRI in Humans at 7T

Introduction: Ultra-high field MR scanners are used to perform brain functional MRI with a very high in-plane resolution [1,2]. Since the human cortex is convoluted in 3D, the use of isotropic voxels with high resolution is essential for fMRI to avoid partial volume effects. With higher field strength and resolution, susceptibility effects and T2* decay cause increased distortions, drop-outs an...

متن کامل

Effect of Physiological noise on Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field

Introduction: Functional MRI methods have been used to study sensorimotor processing in the brain and the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2013